IOCHEMICAL EVIDEN If two organisms have similar DNA molecules, they have similar proteins. Similar proteins have similar amino acid sequences (orders). Thus, if amino acid sequences are similar, DNA of the organisms is similar. Scientists believe that similar DNA sequences indicate a common origin. The more similar the DNA of two living organisms, the more closely related they may be to one another. Hemoglobin, a protein in red blood cells, has been studied. Scientists know the specific amino acids and their arrangements in hemoglobin molecules of humans, gorillas, and horses. In this investigation, you will (a) count and record differences in the sequence of amino acids in similar portions of human, gorilla, and horse hemoglobin. (b) count and record the molecules of each amino acid present in similar portions of human, gorilla, and horse hemoglobin. (c) use these data to show how biochemical evidence can be used to support evolution. #### Procedure ### Part A. Amino Acid Sequence Figure 26-1 on page 102 represents the amino acid sequence of corresponding portions of the hemoglobin melecules of horses, gorillas, and humans. - Read the amino acid sequences from left to right beginning at the upper left-hand comer of Figure 26-2. Compare the requences of humans to the sequences of gerillas and horses. An example of a sequence difference between humans and gorillas is shown in Figure 26-1. - Record in Table 26-1 the total number of differences in the sequences of gorilla and human amino acids. Then repeat this procedure for horse and human, and for gorilla and horse. | | the state of s | | | | | | | |--|--|--|--|--|--|--|--| | TABLE 26-1. NUMBER OF AMINO ACID
SEQUENCE DIFFERENCES | | | | | | | | | ORGANISMS. | NUMBER OF DIFFERENCES | | | | | | | | Gorilla
and human | 1 | | | | | | | | Horse
and human | 3,4 | | | | | | | | Goril la
and horse | 46- | | | | | | | ## Part B. Numbers of Amino Acids - Count the number of each kind of amino acid in human hemoglobin. Record the totals in the proper column of Table 26-2. - · Count each amino acid in the hemoglobin of gorillas and horses. Record these in Table 26-2. His Human: Gorilla: His Horse: This is a sequence difference between human and gorilla. This is a sequence difference between gurilla and horse. This is not a sequence difference between human and horse. FIGURE 26-1 | Human: Gorilla: Horse: | Val
Val
Val | His
His | Leu
Leu
Leu | Thr | | Glu
Glu
Glu | Clu
Clu
Clu | Lys
Lys
Lys | Ser Ser | Ala
Ala
Ala | Val | | Ala
Ala
Ala | Leu | Try
Try | |------------------------------|----------------------------|-------------------|---------------------|---------------------------------------|--------------------|---------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------| | inorse: | , vais | | rcy | , , , , , , , , , , , , , , , , , , , | • | • | | guestant en- | | • | erion to y | | | | · •• • | | Human:
Gorilla:
Horse: | Gly
Gly
Asp | Lys
Lys
Lys | Val
Val
Val | Asp
· Asp
Asp | Val
Val
Glu | Asp | Glu
Glu | Val
Val
Val | Gly
Gly
Gly | Gly
Gly
Gly | Glu
Glu
Glu | Ala
Ala
Ala | Leu
Leu
Leu | Gly | Arg
Arg
Arg | | Human:
Gorilla:
Horse: | Leu
Leu
Leu | Leu
Leu
Leu | Val
Val
Val | Val
Val
Val | Tyr
Tyr
Tyr | Pro
Pro
Pro | Try
Try
Try | Thr
Thr
Thr | Glu
Glu
Glư | Arg
Arg
Arg | Phe
Phe
Phe | Phe
Phe
Phe | Glu
Glu
Asp | Ser
Ser
Ser | Phe
Phe
Phe | | Human:
Gorilla:
Horse: | Gly
Gly
Gly | Asp
Asp
Asp | Leu
Leu
Leu | Ser
Ser
Ser | Thr
Thr
Asp | Pro
Pro
Pro | Asp
Asp
Gly | Ala
Ala
Ala | Val
Val
Val | Met
Met
Met | Gly
Gly
Gly | Asp
Asp
Asp | Pro
Pro | Lys
Lys
Lys | Val
Val
Val | | Human:
Gerilla:
Horse: | l.ys
Lys
Lys | Ala
Ala
Ala | l lis
His
His | Gly
Gly
Gly | Lys
Lys
Lys | Lys
Lys
Lys | Val
Val
Val | Leu
· Leu .
Leu | Gly
Giy
His | Ala
Ala
Ser | Phe
Phe
Phe | Ser
Ser
Gly | Asp
Asp
Glu | Gly
Gly
Gly | Leu
Leu
Val | | Human:
Gorilla:
Horse: | . Ala
Ala
Ala
Hiş | His
His
His | Leu
Leu
Leu | Asp
Asp
Asp | Asp
Asp
Asp | Leu
Leu
. Leu | Lys
Lys
Lys | Gly
Gly
Glv | Thr
Thr
Thr | Phe
Phe
Phe | Ala
Ala
Ala | Thr.
Thr
Ala | Leu
Leu
Leu | Ser
Ser
Ser | Glu
Glu
Glu | | Human:
Gorilla:
Horse: | Leu
Leu
Leu | His | Cys
Cys
Cys | Asp
Asp
Asp | l ys
Lys
Lys | Leu
Leu
Leu | His
His
His | Va!
Val
Val | Asp
Asp
Asp | Pro | Glu
Glu
Glu | Asp
Asp
/ Asp | | | Leu
Leu
Leu | | Human:
Gorilla:
Horse: | Let | L Gly | Asp | Val | Leu
Leu
Leu | Val | Cys | Val | Leu
Leu
Val | Ala | His | His
His
His | Phe | Gly | Lvs
Lys
Lys | | Human
Corilla
Horse | : Gh | u Ph | e Thr | Pro | Pro | Val | Gli | ı Ala | Ala | Туг | r Git | ı Lys | Val | l Val | Al. | | | | | | | | | | | | | , | | | | | Tyr Tyt - Tyr His His Ala ۸la Λia Leu tou Leu Civ $\epsilon a_{\rm Y}$ $\operatorname{Cly} \cong \operatorname{Val}$ Human: Gotilla: Horse: Val A^{a_1} Ala Ala Ala A₅p Asp A80 Ala, Δļa $\Lambda^{!}A$ Lys Lys 11/15 - 175 His His His | | ABBREVIATION | NUMBER OF EA | GORILIA | HORSE | |---------------|--------------|--------------|---------|-------| | AMINO ACID | Ala | | | | | Alanine | | | | | | Arginine | Arg | | | | | Aspartic acid | Asp | | | | | Cysteine | Cys | | | | | Glutamic acid | Glu | | | | | Glycine | Gly | | | | | Histidine * | His | | | | | Leucine | Leu | | | | | Lysine | Lys | | | | | Mathionine | . Met · · · | .• | · | | | Phenylalanine | Phe | | | | | Proline | Pro | • | | | | Şerine | Ser | | | | | Threonine | Thr | | | • | | Tryptophan | Тту | | | | | Tyrosine | Tyr | \ | | | | Valine « | Vál | • | | | #### Analysis | | , | | | | ** | | | |----|---------------------|---------------|----|--------------|-------------|----------|---------------| | 1. | Where is hemoglobin | normally four | d? |
 | | | | | | | | | و جا ان می ا | hamonlohin. | protein. | carbohydrate, | - 2. Circle those words which correctly apply to or describe hemoglobin: protein, carbohydrate, composed of amino acids, chemical molecule, composed of DNA. - 3. How many different kinds of amino acids are present in these three animals' hemoglobin? - 4. (a) Which amino acid is most common in all three animals? - (b) Which amino acid is next most common in all three animals? - (c) Which amino acid is the least common in all three animals? | . Use your data from Table 26-1 to answer these questions. | 200 | |--|--| | (a) How similar are the amino acid sequences of human and gorilla hemoglobin? | and the second second | | (b) How similar are human and horse hemoglobin? | | | (c) How similar are gorilla and horse hemoglobin? | # #
*********************************** | | 6. Of the different types of amino acids found in hemoglobin, | | | the same exact number in humans and gorillas? | gy was also de la de | | (b) in humans and horses? | | | (c) in gorillas and horses? | • | | 7. On the basis of your answer to question 6, (a) how similar are the chemical makeups of human and gorilla hemoglobin? | | | (b) how similar are human and horse hemoglobin? | · | | (c) how similar are gorilla and horse hemoglobin? | | | 8. Which two animals seem to have more similar hemoglobin? 9. The sequence of amino soids corresponds to the sequence of base molecules in DNA. Are sequences of DNA most similar in human and gorilla, gorilla and horse, or human and | the base
horse? | | 10. In numbers, explain how the base sequences (genes) for hemoglobin formation or chromosomes differ from those in gorillas. (How many bases are different?) 11. What genetic mechanism may have been responsible for this base sequence change? | huinen | | 12. Give reasons for supporting or rejecting the following statement. Upon examination, se human and gorilla DNA responsible for inheritance of hemoglobin should appear almost c | ginents of | | alika. | | | | | | | | | 13. Give reasons for supporting or rejecting the following statement. Evolutionary relationstronger between hving organisms which have close biochemical (protein) similarities that | •• | | living organisms which do not have close biochemical similarities. | | | | | | | | | | |